School of Computing, Electronics and Mathematics

BSc (Hons) Mathematics with Finance

In the financial world, high-level mathematics equips you to understand and model the markets. Key topics in this course include stochastic calculus and time series, which are used for modelling the pricing of financial options or quantifying your exposure to risk. You are introduced to the structure of the financial world through modules in accountancy, financial institutions and investment management. You gain strong communication skills through presentations and small group tutorials.

In the 2016 National Student Survey, 95 per cent of students felt staff on this course were good at explaining things; 92 per cent found the course intellectually stimulating; 95 per cent were satisfied with the course overall and 90 per cent felt that our lecturers made the subject interesting.

Many of our students go on to work in the City of London and other financial centres. Careers include accountancy, actuary (modelling risk), quantitative analysts as well as commercial and merchant banking

Key features

  • Benefit from outstanding teaching: in the 2016 National Student Survey 95 per cent of our final year students said that 'Staff are good at explaining things' and 92 per cent felt that 'The course is intellectually stimulating'.  
  • 'Overall, I am satisfied with the quality of the course': 95 per cent of our final year students agreed with this statement in the 2016 National Student Survey.
  • Seize the opportunity to be taught by staff with expertise in financial mathematics and statistics from both the Centre for Mathematical Sciences and Plymouth Business School.
  • Learn from leading mathematicians and statisticians: in the UK 2014 Research Excellence Framework 68 per cent of our research papers were classified as World Leading or Internationally Excellent.
  • Sharpen your knowledge with high level mathematical and statistical techniques from the core of our mathematics degree, and financial applications ranging from accountancy to financial markets and investment management.
  • Become a confident, effective communicator, able to present your ideas visually, verbally and in writing. Small group tutorials help you acquire these skills. In the 2016 National Student Survey 93 per cent of our final year students said that “As a result of the course my communication skills have improved”.
  • Progress in your final year with modules on quantitative finance, which introduce techniques in stochastic calculus for modelling fluctuating financial markets. Other important mathematical material for financial markets include partial differential equations, time series and optimisation techniques.
  • Model and simulate financial products with the professional computing skills you gain on the course such as Bloomberg Professional service and R.
  • Expand the ways you study with access to an extensive set of online support materials, including podcasts and eBooks, that you can freely access via your provided tablet PC.
  • Benefit from a degree accredited by the Institute of Mathematics and its Applications, setting you on a path to Chartered Mathematician (CMath) status.
  • An optional but strongly recommended placement between the second and final years gives you excellent career prospects. Recent placement providers include Vauxhall Motors (finance division) and reinsurance giant Swiss Re.
  • An impressive track record of graduate positions, with our graduates working for Ernst and Young, Whitbread PLC, Francis Clark Chartered Accountants, Rightmove, Wellers, Ricoh UK and Lloyds Banking Group.

Course details

  • Year 1
  • In your first year, you’ll study the same modules as students on BSc (Hons) Mathematics. As well as mathematics, you will study probability and statistics, which underlie much of modern finance such as risk analysis. Modules include calculus, linear algebra, mathematical reasoning and numerical methods. Plymouth Business School lecturers introduce you to financial accounting.
    Core modules
    • ACF1002PP Understanding Financial Markets

      This module explores the role of financial markets in a capitalist economy. The module provides an introduction to the nature and operation of financial markets and the risks and opportunities that investors face when using financial markets including banks and insurance companies. The module will also cover, at a basic level some key financial concepts, including risk and return and market efficiency.

    • BPIE113 Stage 1 Mathematics Placement Preparation

      This module is aimed at students who may be undertaking an industrial placement in the third year of their programme. It is designed to assist students in their search for a placement and in their preparation for the placement itself.

    • MATH1601 Mathematical Reasoning

      This module introduces the basic reasoning skills needed for the development and applications of modern mathematics. The importance of clear logical thinking will be explored in various mathematical topics. This will include fundamental properties of prime numbers, their random generation and use in cryptography.

    • MATH1602 Calculus and Analysis

      This module covers key topics in calculus and analysis and prepares students for the rest of their degree. It has a greater emphasis on proof and rigour than at A-level and introduces some multi-dimensional calculus together with the reasoning skills needed for the development of modern mathematics. The rigorous underpinning of analysis will be developed and applied to limits of sequences, series and functions.

    • MATH1603 Linear Algebra and Complex Numbers

      This module explores the concepts and applications of vectors, matrices and complex numbers. The deep connection between algebra and geometry will be explored. The techniques that will be presented in this module are at the foundation of many areas of mathematics, statistics, physics, and several other applications.

    • MATH1605 Probability with Applications

      An understanding of uncertainty and random phenomena is becoming increasingly important nowadays in daily life and for a variety of fields. The aim of this module in probability is to develop the concept of chance in a mathematical framework. Random variables are also introduced, with examples involving most of the common distributions and the concepts of expectation and variance of a random variable.

    • MATH1606 Numerical and Computational Methods

      This module provides an introduction to the Maple and Matlab software, computational mathematics and creating simple computer programs. Students will use Maple/Matlab interactively and also write procedures in the Maple/Matlab computer languages. The elementary numerical methods which underlie industrial and scientific applications will be studied.

  • Year 2
  • In Year 2, you'll study a range of modules including vector calculus, differential equations and Monte Carlo methods where random sampling is used to solve numerical problems. You'll also examine financial markets, institutions, and instruments including interest rates, exchange rates, forward rates, options, swaps and hedging with derivative securities. The second year also provides you with skills in operational research, the mathematical techniques underlying management and decision making.
    Core modules
    • ACF201 Financial Institutions and Markets

      This module deals with financial markets, instruments, and institutions. The coverage includes the bond market, the stock market and the foreign exchange market. The module will also introduce investment banking and mutual funds.

    • BPIE213 Stage 2 Mathematics Placement Preparation

      This module is aimed at students who may be undertaking an industrial placement in the third year of their programme. It is designed to build on the Level 1 module (BPIE111) and to assist students in their search for a placement and in their preparation for the placement itself.

    • MATH2601 Advanced Calculus

      Partial differentiation is consolidated and applied to practical problems. Multiple integration is introduced. Vector calculus is introduced and its use in integration explored.

    • MATH2602 Statistical Inference and Regression

      The module provides a mathematical treatment of statistical inference, including confidence intervals and hypothesis testing. Methods of estimation are explored, focusing on maximum likelihood estimation. The module also demonstrates the underlying mathematical theory of the general linear model, through a variety of applications, using professional software.

    • MATH2603 Ordinary Differential Equations

      The module aims to provide an introduction to different types of ordinary differential equations and analytical and numerical methods to obtain their solutions. Extensive use will be made of computational mathematics packages. Applications to mechanical and chemical systems are considered as well as the chaotic behaviour seen in climate models.

    • MATH2604 Mathematical Methods and Applications

      Vector calculus is extended to higher dimensions and applied to a range of important scientific problems primarily from classical mechanics and cosmology. Differential and integral calculus is applied to the solution of differential equations and the orthogonal functions bases are constructed. The crucial mathematical concepts of integral transforms (Fourier and Laplace) and Fourier series are introduced.

    • MATH2605 Operational Research and Monte Carlo Methods

      This module gives students the opportunity to work on open-ended case studies in operational research (OR) and Monte Carlo methods, both of which are important methods in, for example, industry and finance. It allows students to work on their own and in teams to develop specific skills in OR and programming as well as refining their presentation and communication skills.

  • Optional placement year
  • An optional but highly recommended placement in Year 3 provides you with valuable paid professional experience and helps make your CV stand out. Recent placement providers include Vauxhall Motors (finance division) and reinsurance giant Swiss Re.
    Optional modules
    • BPIE331 Mathematics and Statistics Placement

      A 48-week period of professional training spent as the third year of a sandwich programme undertaking an approved placement with a suitable company. This provides an opportunity for the student to gain experience of how mathematics and statistics are used in a working environment, to consolidate the first two stages of study and to prepare for the final stage and employment after graduation.

  • Final year
  • In your final year you'll study financial institutions as well as stochastic calculus and time series both of which underlie the modelling of financial markets. You’ll choose from a range of modules including mathematical statistics and non-linear systems. Deepen your expertise with optional modules covering topics including partial differential equations, time series and optimisation techniques. You can also undertake a final year project on a topic of personal interest. Recent projects have included the Black-Scholes model and simulations of derivative pricing.
    Core modules
    • ACF302 Investment Management

      This module is designed to provide a broad understanding of equities and bonds as investments. It considers their pricing and use in investment management along with that of derivatives. In addition core concepts in finance are covered including market efficiency, diversification, risk, portfolio building and evaluation.

    • MATH3609 Optimisation, Networks and Graphs

      This module introduces the mathematics of continuous and discrete optimisation. It provides the theoretical background and practical algorithmic techniques required to model and solve a diverse range of problems.

    • MATH3623 Financial Statistics

      This module introduces students to the concepts and methods of financial time series analysis and modelling and to a variety of financial applications. The module reviews the necessary univariate and multivariate time series models and inferential techniques. Model selection, forecasting and curse of dimensionality problems are treated both at methodological and computational levels.

    Optional modules
    • MATH3603 Professional Experience in Mathematics Education

      This module provides an opportunity for final year students to gain experience in teaching and to develop their key educational skills by working in a school environment for one morning a week over two semesters.

    • MATH3605 Partial Differential Equations

      This module introduces Partial Differential Equations using real-life problems. It provides a variety of analytic and numerical methods for their solution. It includes a wide range of applications including heat diffusion and the Tsunami wave.

    • MATH3612 Dynamical Systems

      This module presents an introduction to the basic concepts and techniques needed to analyse nonlinear dynamical systems modelled by differential equations and difference equations. Both regular and chaotic dynamics will be explored.

    • MATH3613 Data Modelling

      This module provides an employment relevant tool box of statistical modelling techniques and a rigorous treatment of the some underlying mathematics. The Bayesian framework for statistical inference will be presented and compared with the classical approach. Relevant computational algorithms, including Markov chain Monte Carlo, will be described. Application rich modelling problems will be considered.

    • MATH3614 Medical Statistics

      The content includes the design and analysis of clinical trials, including crossover and sequential designs and an introduction to meta-analysis. Epidemiology is studied, including case-control and cohort studies. Survival analysis is covered in detail. Computer packages are used throughout.

    • MATH3616 Professional Experience in Industry

      This module provides an opportunity for final year students to gain experience in applying mathematics in a professional environment and to develop relevant key competencies by working in a commercial environment for one day a week.

    • MATH3624 Mathematical Finance in Context

      In this module students will perform structured investigations on a variety of advanced topics in mathematical finance. Written and oral presentations of the work will be made.

    • MATH3628 Project

      In this module students will work individually and independently, with help and advice from a supervisor, on a topic chosen by the student. This could range from a topic preparing for a particular career or a subject which the student is particularly interested in exploring in depth. Written and oral presentations of the work will be made.

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

The following programme specification represents the latest course structure and may be subject to change:

BSc Mathematics with Finance 2517 Programme Specification September 2016 2517

The modules shown for this course are those currently being studied by our students, or are proposed new modules. Please note that programme structures and individual modules are subject to amendment from time to time as part of the University’s curriculum enrichment programme and in line with changes in the University’s policies and requirements.

Entry requirements

UCAS tariff

120 - 128

A level
A typical offer is 120 points to include minimum of 2 A levels, including grade B in A level Mathematics or B in Further Mathematics or A level Mathematics and Statistics or Math (Pure and Applied) excluding general studies. Mathematics (mechanics) accepted as mathematics.

BTEC
18 Unit BTEC National Diploma/QCF Extended Diploma: DDM to include a distinction in a mathematics subject: individual interview/diagnostic test will be required.

BTEC National Diploma modules
If you hold a BTEC qualification it is vital that you provide our Admissions team with details of the exact modules you have studied as part of the BTEC. This information enables us to process your application quickly and avoid delays in the progress of your application to study with us. Please explicitly state the full list of modules within your qualification at the time of application.

Access
Pass Access to HE Diploma (e.g mathematics, science, combined) with at least 33 credits at merit and/or distinction and to include at least 12 credits in mathematics units with merit. Individual interview/diagnostic test will be required please contact admissions@plymouth.ac.uk for further information.

International Baccalaureate
30 overall to include 5 at Higher Level mathematics. English must be included.

Other qualifications are also welcome and will be considered individually, as will be individuals returning to education, email maths@plymouth.ac.uk

Students may also apply for the BSc (Hons) Mathematics with Foundation Year. Successful completion of the foundation year guarantees automatic progression to the first year of any of our mathematics courses.

For a full list of all acceptable qualifications please refer to our tariff glossary.

English language requirements

Fees, costs and funding

New Student 2017 2018
Home/EU £9,250 To be confirmed
International £12,250 To be confirmed
Part time (Home/EU) Check with School To be confirmed
Part time (International) Check with School To be confirmed
Full time fees shown are per annum. Part time fees shown are per a number of credits. Fees are correct at the time of publication and may be subject to change.
Scholarships and Awards
For 2017 entry, we have the following scholarship:
  • Mathematics Scholarship of up to £1,000: students are automatically paid £500 for an A in Mathematics A level and/or £500 for an A in Further Mathematics A level. This is awarded to anybody who puts us as their firm choice before the 1st of August 2017. The scholarship is paid in the first semester of the first year.
  • There are additional prizes and awards to reward high marks in later years.

How to apply

All applications for undergraduate courses are made through UCAS (Universities and Colleges Admissions Service). 

UCAS will ask for the information contained in the box at the top of this course page including the UCAS course code and the institution code. 

To apply for this course and for more information about submitting an application including application deadline dates, please visit the UCAS website.

Support is also available to overseas students applying to the University from our International Office via our how to apply webpage or email international-admissions@plymouth.ac.uk.



Studying mathematics with finance

Become an expert in financial markets, investment management and the use of high level mathematical tools such as the Black-Scholes stochastic partial differential equation used to model option pricing.

You’ll also master statistical skills and the analytical and computational techniques required for business and management.

Find out more about studying mathematics with finance

Students working in our Bloomberg Lab using live data from stock markets

Technology supported learning

From podcasts, online videos, eBooks and electronic copies of lecture notes, to in-class voting and online feedback, you’ll have access to all the resources you need with your own tablet PC. You can also use this to create podcasts in assessments.

Access to University online systems such as module sites, the eLibrary and email at your fingertips.

Placements

Deciding on completing a ‘placement year’ is an excellent way to gain that competitive edge, in time for when the graduation schemes launch. You will advance your knowledge of internal working practices, whilst developing as an individual

Our student success stories

Mathematics Scholarships: up to £1000

Choose to study mathematics with Plymouth University and you may be eligible to receive a scholarship of up to £1000.

Make Plymouth University your firm choice before the 1st of August 2017 and you will automatically be paid £500 for an A in Mathematics A level and/or £500 for an A in Further Mathematics A level. You will receive the scholarship during the first semester of the first year.

Additional prizes and awards will be available in later years to reward high marks.

Studying mathematics at Plymouth

Professor David McMullan, Associate Head of School, and final year student Dan Hodges discuss what it’s like to study here, and show you some of our facilities.

Meet some of your lecturers