Revolutionary new technology created at the University of Plymouth could fill a major gap in our understanding of how organisms’ early development will be impacted by climate change.
EmbryoPhenomics combines unique hardware and software to produce automated measurements of the size, shape, movement and heart rate of organisms, capturing the most minute details of their very early development.
It comprises OpenVIM, a fully automated robotic video microscope for recording hundreds of aquatic embryos over long periods, and EmbryoCV, pioneering analytical software which can automatically measure the dynamic process of development for each embryo.
Writing in PLoS Biology, researchers say the technology provides the opportunity to efficiently visualise and measure whole-organism responses to different environments and could be a game-changer for biology.
They also say that while capturing the dynamic responses of tiny early life stages is inherently challenging, these stages are pivotal and can actually have greater sensitivity to environmental stressors than in later life.
The study’s lead author, Dr Oliver Tills, began developing EmbryoPhenomics around nine years ago during his BSc (Hons) Marine Biology and Coastal Ecology degree.