Chemistry facilities
the philosophy of our chemistry courses is that you ‘learn by doing’.

These are techniques used to identify and quantify individual elements in a sample. Our industry standard instruments are located within a laboratory certified to ISO 9001 and are used for analysing samples from as diverse origins as the environment (soils, sediments, waters and vegetation), biological samples (tissues and foods) and industry (ores, alloys, paints, plastics, etc). Recent projects include the assessment of human uptake of arsenic from foodstuffs, nanoparticles in fish tissues, metals in soil samples from Tanzania and more locally, the impact of dairy wastewaters on local rivers.
Semi-volatile organic compounds can be separated in the gas phase and then identified and quantified with a suitable detector. GC-FID can be used to quantify separated analytes and has wide-ranging applications in the food, pharmaceutical and petroleum industries. Mass spectrometry is a technique that analyses ions based on their molecular mass. In GC-MS compounds provide characteristic ‘fingerprint’ patterns for each molecule. We use these techniques to identify organic pollutants and toxic compounds.
Measuring the volume of an irregularly shaped object can be tricky, especially when it is porous. Our pycnometers measure the volume and density of a sample by the displacement of helium gas or a fine powder. Porosimetry can determine the size of internal pores of materials. Our instruments are located within a laboratory certified to ISO 9001 and these techniques can be used to investigate geological samples, soil, or samples of industrial interest. Surface area measurements are performed by measuring the amount of gas molecules adsorbed onto the surface to then gain information about the surface of materials such as catalysts. Recent work has involved power generation samples and novel catalysts.
Chemiluminescence, the emission of light as the result of a chemical reaction, is a highly sensitive analytical technique. We combine this with flow injection to separate Fe and Co from seawaters, allowing the measurement of these elements at natural levels. This is essential for understanding the biogeochemical cycles of these elements. Plymouth is a world leader in these measurements, and this allows us to predict the impact their scarcity in the marine environment will have on climate change and global heating. Recently, our work has focused on the challenge of miniaturising the instrumentation for use on autonomous underwater vehicles as well as on-going projects quantifying Fe in the Atlantic, Indian and Pacific Oceans.
This is the emission of characteristic ‘secondary’ (or fluorescent) X-rays from a material which can be used to quantify elemental concentrations in a sample. This instrument is also located within a laboratory certified to ISO 9001 and recent projects have investigated the transport of terrestrial materials into water courses to improve land management. As well as our laboratory-based instruments, we have a portable handheld XRF instrument so that measurements can be made almost anywhere. You may have seen reports of this recently in the national media, regarding lead contamination in playground equipment.
Each radioisotope emits gamma radiation at specific wavelengths and this can be used to measure radioisotopes that occur naturally in the environment or are made in nuclear reactors. Again, this instrument is also located within a laboratory certified to ISO 9001. Recent projects have measured the amount of 210Pb in sediment and peat core samples to allow these to be dated and past environments to be reconstructed, while other projects have measured 7Be to track the movement of particles in the environment, and to track the release of U and Th from historical mine sites in our region.