Dr Philip Hosegood

Dr Philip Hosegood

Associate Professor (Reader) in Physical Oceanography

School of Biological & Marine Sciences (Faculty of Science & Engineering)


Phil Hosegood is an observational physical oceanographer with more than 15 years experience in collecting and interpreting measurements from a diverse range of dynamic regimes in the marine environment. He has authored more than 20 peer-reviewed publications and more than 40 conference abstracts. Phil obtained his PhD cum laude from Utrecht University after studying the processes that drive enhanced turbulent mixing over continental slopes. He then spent 2 years working at the Applied Physics Laboratory at the University of Washington,Seattle, studying the influence of submesoscale processes on the oceanic surface mixed layer. Since his appointment at Plymouth University Phil has received numerous research grants, several as Principal Investigator, to investigate the near coastal shelf sea environment, exchange processes at the continental shelf, upper ocean submesoscale dynamics, and the implications of oceanographic processes on the regional ecosystem in the Chagos archipelago,Indian Ocean. He has participated in several ocean-going cruises and recently led JR311 aboard the RRS James Clark Ross during which his team made the first purposeful measurements of submesoscales in the Southern Ocean. Phil currently leads the Marine Physics Research Group that brings together scientists within the university that have a common interest in understanding the physics that influence the dynamics and physical properties of the marine environment.


  Certificate of Learning and Teaching in Higher Education
  Fellow of The Higher Education Academy 

  • 2015 - present: Associate Professor (Reader) in Physical Oceanography

    2007 - 2015: Lecturer in Physical Oceanography, Plymouth University

  • 2005 – 2007: Post-doctoral Research Associate, Applied Physics Laboratory, University of Washington. My ongoing research with Prof. Mike Gregg and Prof. Matthew Alford, seeks to understand the respective roles played by mixing and restratification in the surface mixed layer in the north-eastern Pacific Ocean, particularly at sub-mesoscales. This is achieved by the analysis of an extensive dataset obtained through the use of the Shallow Water Mapping System (SWIMS), microstructure profilers (MMP) and acoustic Doppler current profilers.

  • 2000 – 2004: Ph.D (cum laude) Physical Oceanography, Royal Netherlands Institute of Sea Research (NIOZ), Netherlands. The study was conducted within the multidisciplinary project Processes over the Continental Slope (PROCS) and investigated, through the analysis of data obtained from a combination of moored and ship-based instruments, short-term mixing processes over the continental slope in the Faeroe-Shetland Channel. The work was conducted under the supervision of Dr. Hans van Haren. The thesis, entitled ‘Observations of the impact of flow-topography interactions on mixing processes within a confined basin: the Faeroe-Shetland Channel’, may be viewed on-line at:


  • 1998 – 1999: M.Sc Applied Marine Science, Plymouth University, UK. A dissertation entitled ‘Mesoscale Variability on the Continental Slope in the Faeroe-Shetland Channel’ was completed under the supervision of Professor David Huntley and in which the dynamics of the study region were considered using several year-long data sets.

  • 1994 – 1997: B.Sc Geography, Southampton University, UK.

Professional membership


Member of American Geophysical Union
Peninsula Research Institue for Marine Renewable Energy

Teaching interests

*** Nominated 'Most Inspirational Teacher' SSTAR awards, 2011, 2016***

I currently teach on the BSc Marine Science programme  and MSc Marine Renewable Energy degrees. I lead three modules:

  • OS201 Global Ocean Processes: This module teaches students about the major oceanographic processes that influence the ocean circulation and have implications for biogeochemical processes throughout the marine environment.
  • OS206 Researching the Marine Environment: This module teaches students advanced practical skills appropriate to their specific degree. We train students to be able to independently conduct fieldwork with minimal supervision, including instrument programming, preparation, deployment and recovery, in addition to project planning and management.
  • MAR526 Introduction to Marine Renewable Energy - All students on the  MSc Marine Renewable Energy and MEng Mechanical Engineering degrees take this modules that provides a comprehensive overview of the marine renewable energy sector.

I also teach on two of the residential field weeks, to the Scilly Isles and Bahamas, during which I teach the observational oceanography elements.

Staff serving as external examiners

Served as External Examiner for the PhD of Emily Venables, Scottish Association of Marine Science, 2011

Research interests


My principal research interests are the understanding, primarily through the analysis of observations, of dynamic oceanographic processes occurring at scales between turbulence and the mesoscale.  I currently participate and lead a number of projects that investigate the physical oceanography of the near-coastal shelf sea environment, the shelf edge region where water from the open ocean is exchanged with the shelf seas, and the air-sea interface where the ocean and atmosphere exchange properties.

My previous work focused on the role played by dynamic processes occurring at sloping boundaries, particularly internal waves, and how this influences diapycnal mixing. As a part of a multidisciplinary team, I also studied how such processes further influence the distribution and transport of sediment and the structure of the near-bed benthic biological community. I am continuing my interest in shelf-edge processes by leading a work package on the NERC-funded consortium grant, Fluxes Across Sloping Topography in the northeast Atlantic (FASTNEt).

My current research also investigates the near-coastal environment and the air-sea interface where the competing influences of mixing and restratification, particularly those due to horizontal rather than vertical processes, are of substantial importance to the interaction between the atmosphere and the ocean. I currently lead a substantial international project investigating submesoscale processes in the Southern Ocean for which I led a 32-day cruise aboard the RRS James Clark Ross to the Subantarctic Front during May 2015.

Most recently, I have applied my understanding of oceanographic processes to the interpretation of predator foraging in a range of marine habitats. In February 2016 I participated in my second cruise to the Chagos archipelago in the Indian Ocean to study the oceanographic regime and associated ecosystem response following a cruise during January 2015 that made the first substantive oceanographic measurements in the region.

Research degrees awarded to supervised students

PhD supervision (completed):

  • Jaimie Cross: 'The Dynamics of Suspended Particles in a Seasonally Stratified Shelf Sea'. NERC-funded, 2009 - 2012
  • Ed Steele'3D Turbulence Structure in the Sea', SMSE funded, 2011 - 2015
  • Sam Cox''Physical drivers of predator foraging in the marine environment', NERC-funded, 2011 - 2016
PhD/MPhil supervision (ongoing):
  • Megan Sheridan: 'Dynamics of small-scale coastal plumes', SMSE-funded, 2012 - present
  • Marcus Zannachi: 'Physical controls on primary production in marginally stratified shelf seas', NERC-funded, October 2013 - present.

Grants & contracts

  • 2014: Understanding dynamic tidal drivers of Bottlenose dolphin foraging behaviour, Marine Institute, £5,000, Co-I

This pilot study will survey the velocity field within the Shannon Estuary where previous work has demonstrated that foraging dolphins prefer specific areas at particular phases of the tidal cycle. We believe that this is due to specific hydrodynamic features that are generated by the strong tidal currents interacting with bathymetry, such as lee waves and back eddies. During spring 2014 we will perform a number of vessel-mounted ADCP surveys at key locations within the Shannon to validate our hypothesis with a view to applying for further funding that will continue the research by considering all trophic levels within the ecosystem.

  • 2014 - 2017: Surface Mixed Layer Evolution at Submesoscales (SMILES), Natural Environment Research Council, £1.2 million (£470,000 to Plymouth University as lead institute), PI.

The purpose of SMILES is to identify the potentially crucial role played by submesoscales in influencing the structure and properties of the upper ocean, and thereby the transformation of surface water masses, within the Southern Ocean. Submesoscales are flows with spatial scales of 1-10 km that occur within the upper ocean where communication and exchange between the ocean and the atmosphere occurs. Previously considered unimportant to climate-scale studies due to their small scale and the presumed insignificance of their dynamics, recent evidence from high resolution regional models and observational studies is now emerging which suggests that submesoscales are actually widespread throughout the upper ocean and play a key role within climate dynamics due to their ability to rapidly restratify the upper ocean and reduce buoyancy loss from the ocean to the atmosphere. The impact of such a process is particularly important to the surface transformation of water masses such as Subantarctic Mode Water (SAMW), which is an important component of the Meridional Overturning Circulation (MOC) that redistributes heat, freshwater and tracers around the globe.

  • 2011 - 2015: Fluxes Across Sloping Topography of the North East Atlantic (FASTNeT), Natural Environment Research Council, £3.6 million (£600,000 to Plymouth University), WP2 leader. See http://www.smi.ac.uk/fastnet for project website.

The shelf edge is the controlling gateway to exchange of nutrients and carbon between oceanic and shelf waters, with impacts on global climate and on regional resources. As a result the shelf edge has been the focus of a number of studies on which our present understanding of exchange processes is based and all involving members of this consortium. There are, however, two significant deficiencies in our understanding of shelf edge exchange that we aim to address in this proposal.

First, we lack knowledge of the seasonal and inter-annual variability in the behaviours of different exchange mechanisms. This is in large part due to past technical difficulties in making winter measurements of exchange processes. Understanding seasonality in physical exchange is vital if we are to derive meaningful estimates of biogeochemical fluxes.

Secondly, the problem with current estimates of shelf edge exchange lies with the challenge in integrating our existing understanding of individual processes to regional scale estimates of cross-shelf edge fluxes. This arises from the computational difficulty of correctly resolving the often small scale physical processes in regions of steep bathymetry in regional numerical models.

Within FASTNEt we are using state-of-the-art, novel instrumentation and platforms to address these problems. Specifically, undersea gliders, satellite-tracked drifters and the newly developed Autosub Long Ranger will be deployed throughout winter when ship-based operations are not possible. Within work package that I lead, we will also obtain measurements during a cruise to the Malin Shelf during July 2013 to investigate the role of intermediate scale processes, such as slope current instabilities and Ekman drainage, in modulating cross-slope exchange.

  • 2011 - 2014: Assessing the sensitivity of marginally stratified shelf seas within a changing climate, Natural Environment Research Council, (£100,000), PI 

Continental shelf seas are extremely important because of the high levels of primary productivity that they sustain and their ability to absorb and sequester atmospheric gases including climatically important greenhouse gases. The key physical aspect of shelf seas that enables them to do so is the vertical density stratification, established throughout spring and summer when the stabilizing influence of solar radiation or fresh water overcomes the destabilizing influence of turbulent mixing. In several places around the UK, such as the Irish Sea, well-established fronts form between stratified and vertically well-mixed water due to the well-understood dominant effect of friction generated at the sea bed by strong tidal currents whose influence extends throughout the water column. Throughout the majority of UK coastal waters tidal mixing is less dominant, however, and the competition between turbulent mixing and restratification is more delicately poised. Stratification and the resulting ephemeral fronts are transient in space and intermittent in time. To study this problem, I undertook extensive fieldwork at the WaveHub site in the southern Celtic Sea during 2012. Using the Plymouth University research vessel, the Falcon Spirit, I measured a range of parameters using ship-based and moored instrumentation, with additional support from remote sensing platforms, throughout two, 2-week periods during April and August. Results are currently being worked up.

  • 2011 - 2014: Marine Energy in Far Peripheral and Island Communities (MERiFIC), ERDF INTERREG IVa, €4.5 million (€600,000 to Plymouth), Co-I

The MERiFIC project seeks to advance the adoption of marine energy across the two regions of Cornwall and Finistère and the island communities of le Parc Naturel Marin d’Iroise and the Isles of Scilly. Project partners will work together to identify the specific opportunities and issues faced by peripheral and island communities in exploiting marine renewable energy resources with the aim of developing tool kits and resources for use by other similar communities. My role is to provide insight into the importance of physical oceanogrpahic processes within the work package on Technology Support.

  • 2011 - 2014:  Streamlining of Wave Farm Impact Assessment (SOWFIA), EU Intelligent Energy, (€400,000 to Plymouth University), Co-I

The SOWFIA project aims to achieve the sharing and consolidation of pan-European experience of consenting processes and environmental and socio-economic impact assessment (IA) best practices for offshore wave energy conversion developments. Studies of wave farm demonstration projects in each of the collaborating EU nations are contributing to the findings. The study sites comprise a wide range of device technologies, environmental settings and stakeholder interests. The overall goal of the SOWFIA project is to provide recommendations for approval process streamlining and European-wide streamlining of IA processes, thereby helping to remove legal, environmental and socio-economic barriers to the development of offshore power generation from waves.

  • 2010 - 2011:  Wave Hub baseline study, Natural Environment Research Council, £190,000,(£41,000 to Plymouth University), Co-PI

Until wave energy devices are deployed, we cannot predict with any accuracy the impacts that they will have on the physical and biological systems. In anticipation of the first deployment of wave energy convertors at the Wave Hub site during the summer of 2013, we collected the necessary baseline data during fieldwork in 2012 to enable future assessments to be made of the impact of energy extraction.

  • 2011 - 2012:  Top predator distribution and behaviour at shelf sea fronts, Marine Institute, £5,000, Co-I

Predators in the marine environment do not forage indiscriminately, but instead choose particular regimes in which to feed. We believe that physical aspects of the marine environment are a key element to this selection process and so we undertook seabird and marine mammal surveys during our work at the WaveHub during 2012. Initial results showed that foraging was intensified at the front during our August surveys, verifying the preference of predators for foraging at specifical physical features. Sam Cox is the NERC-funded PhD student working on this topic and who I supervise.

  • 2009 - 2012: Marine e-Data Observatories Network - MeDON, ERDF INTERREG IV, €1.4 million,  (€9,244 to Plymouth University), Co-PI

Cabled seafloor observatories are an emerging technology capable of providing an effective platform for real-time and high-resolution monitoring, provided that they are adapted to the needs of end-users and are not intrusive in the environment. It is also a great instrument providing data for education and public outreach to promote the marine environment. Scientists and end-users will benefit from free access to the data in near-real time. MeDON wants to demonstrate that this novel technology can help us develop tomorrow's coastal marine observatories.

  • 2008: Dynamic Response to Energy Extraction and Mixing (DREEM), South West Regional Development Agency, £184,000, PI 

This project served as the forerunner to the later grants for work at the Wave Hub. Despite being hampered by bad weather during several efforts to acquire data from the Wave Hub, DREEM enabled the acquisition of a turbulence mixrostructure profiler and a MiniBat. The profiler collects very high resolution measurements of turbulent velocity fluctuations throughout the water column from which we can estimate the intensity of turbulence in the water. This is a critical quantity when studying the integrity of frontal systems in shelf seas in particular. The MiniBat is a towed conductivity-temperature-depth sensor that depth-cycles behind the boat, providing three-dimensioanl visualisations of the thermohaline structure of the survey region.

Research groups

  • Marine Physics Research Group

Key publications are highlighted

van Haren H & Hosegood PJ 2017 'A downslope propagating thermal front over the continental slope' Journal of Geophysical Research Oceans , DOI PEARL
Adams K, Hosegood PJ, Taylor JR, Sallee JB, Bachman S, Torres R & Stamper M 2017 'Frontal circulation and submesoscale variability during the formation of a Southern Ocean mesoscale eddy' Journal of Physical Oceanography PEARL
stashchuk N, vlasenko V, Hosegood PJ & nimmo smith W 2017 'Tidally induced residual current over the Malin Sea continental slope' Continental Shelf Research , DOI PEARL
Carter M, Bennett K, Embling C, Hosegood PJ & Russell D 2016 'Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds' Movement Ecology PEARL
COx SL, Miller PI, Embling CB, Scales KL, Bicknell AWJ, Hosegood PJ, Morgan G, Ingram SN & Votier SC 2016 'Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots' Royal Society Open Science PEARL
Cox SL, Witt MJ, Embling CB, Godley BJ, Hosegood PJ, Miller PI, Votier SC & Ingram SN 2016 'Temporal patterns in habitat use by small cetaceans at an oceanographically dynamic marine renewable energy test site in the Celtic Sea' Deep Sea Research Part II: Topical Studies in Oceanography , DOI PEARL
Cross J, Nimmo-Smith WAM, Hosegood PJ & Torres R 2015 'The role of advection in the distribution of plankton populations at a moored 1-D coastal observatory' PROGRESS IN OCEANOGRAPHY 137, 342-359 Author Site , DOI PEARL
Jones AR, Hosegood P, Wynn RB, De Boer MN, Butler-Cowdry S & Embling CB 2014 'Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot' PROGRESS IN OCEANOGRAPHY 128, 30-48 Author Site , DOI PEARL
Cross J, Nimmo-Smith WAM, Hosegood PJ & Torres R 2014 'The dispersal of phytoplankton populations by enhanced turbulent mixing in a shallow coastal sea' JOURNAL OF MARINE SYSTEMS 136, 55-64 Author Site , DOI
Cross J, Nimmo Smith WAM, Torres R & Hosegood PJ 2013 'Biological controls on resuspension and the relationship between particle size and the Kolmogorov length scale in a shallow coastal sea' Marine Geology 343, 29-38 , DOI
Hosegood PJ, Gregg MC & Alford MH 2013 'Wind-driven submesoscale subduction at the north Pacific subtropical front' Journal of Geophysical Research n/a, , DOI
Witt MJ, Sheehan, E.V., Bearhop S, Broderick AC, Conley, D.C., Cotterell SP, Crow E, Grecian WJ, Halsband C & Hodgson DJ 2012 'Assessing wave energy effects on biodiversity: the Wave Hub experience' Philosophical Transactions of the Royal Society of London A 370, (1959) 502-529 , DOI
Vsemirnova EA, Hobbs RW & Hosegood PJ 2011 'Mapping turbidity layers using seismic oceanography methods' Ocean Science 8, 11-18 , DOI
Hosegood PJ, Gregg MC & Alford MH 2008 'Restratification of the Surface Mixed Layer with Submesoscale Lateral Density Gradients: Diagnosing the Importance of the Horizontal Dimension' JOURNAL OF PHYSICAL OCEANOGRAPHY 38, (11) 2438-2460 Author Site , DOI
Bonnin J, van Haren H, Hosegood P & Brummer GJA 2006 'Burst resuspension of seabed material at the foot of the continental slope in the Rockall Channel' Marine Geology 226, (3-4) 167-184
Hosegood P & van Haren H 2006 'Sub-inertial modulation of semi-diurnal currents over the continental slope in the Faeroe-Shetland Channel' Deep-Sea Research Part I-Oceanographic Research Papers 53, (4) 627-655
Hosegood P, Gregg MC & Alford MH 2006 'Sub-mesoscale lateral density structure in the oceanic surface mixed layer' Geophysical Research Letters 33, (22)
Bonnin J, van Haren H, Hosegood P & Brummer G-J 2006 'Variability in resuspension at the foot of the continental slope of the Rockall Channel' Marine Geology 226, 167-184
Hosegood P, van Haren H & Veth C 2005 'Mixing within the interior of the Faeroe-Shetland Channel' Journal of Marine Research 63, (3) 529-561
Hosegood P & van Haren H 2004 'Near-bed solibores over the continental slope in the Faeroe-Shetland Channel' Deep-Sea Research Part Ii-Topical Studies in Oceanography 51, (25-26) 2943-2971
Hosegood P, Bonnin J & van Haren H 2004 'Solibore-induced sediment resuspension in the Faeroe-Shetland Channel' Geophysical Research Letters 31, (9)
Hosegood P & van Haren H 2003 'Ekman-induced turbulence over the continental slope in the Faeroe-Shetland Channel as inferred from spikes in current meter observations' Deep-Sea Research Part I-Oceanographic Research Papers 50, (5) 657-680

Other academic activities


Invited reviewer: Deep-Sea Research, Journal of Physical Oceanography, Journal of Geophysical Research, Geophysical Research Letters;

Reviewer of National Science Foundation (NSF) grant proposals.