Plymouth University

Faculty of Science and Engineering
School of Marine Science and Engineering

Programme Specification

BSc (Hons) in Marine and Composites Technology 2284
BSc (Hons) in Marine and Composites Technology (Integrated) 4407

September 2016
1. **Bachelor of Science with Honours Marine and Composites Technology**

 Final award title: BSc(Hons) in Marine and Composites Technology

 Level 1 Intermediate award title: Certificate of Higher Education (CertHE)

 Level 2 Intermediate award title: Diploma of Higher Education (DipHE)

 UCAS code: J600

 JACS code: H300

2. **Awarding Institution:** Plymouth University

 Teaching institution: Plymouth University

3. **Accrediting bodies**

 1. Institution of Engineering and Technology (IET)
 2. Institution of Engineering Designers (IED)
 3. Institute of Marine Engineering Science and Technology (IMarEST)
 4. Royal Institution of Naval Architects (RINA)

Program Overview (specifics, conditions and regulations)

The BSc MCT program, developed along CEP lines, has been designed to meet the needs of the marine technology sector. Graduates from this programme possess a firm foundation in the principles of mechanical engineering in a composite materials and marine technology context. It is fully accredited by the accrediting bodies shown above, on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer (IEng) and partially meeting those required for CEng (Chartered Engineer) registration. Professional accreditation of the programme remains vitally important to ensure that it is attractive, and industrially relevant, to prospective engineering students in an increasingly competitive market.

Date of re-accreditation (if accepted by EAB)

Re-accreditation of the programme is carried out every five years with the next visit due in February 2017.
4. Distinctive Features of the Programme and the Student Experience

- A broad based engineering programme incorporating Marine Technology and Composite Materials thus enabling students to consider a wide variety of future marine or materials based careers or further study.
- Specialist modules in Design, Manufacturing, Marine and Composite Materials Technology, including the substantial study of the principles of Naval Architecture.
- An intensive 20 credit immersive “skills for design and engineering” module at the start of stage 1. For the MCT programme this module will have a distinct marine flavour to its presentation and the skills developed.
- A “team engineering” module aimed at developing the essential professional engineering skill of working with others and team building on a marine or materials based project.
- Opportunity for an Industrial Placement, which may include an overseas placement.
- Eligibility to apply for Incorporated Engineer Status with an appropriate engineering or marine institution (RINA, IMarEST, IET and IED).
- Opportunity to develop the necessary skills and competences required to use modern computer aided methods appropriate to the marine sector; this will include computational fluid dynamics (CFD), finite element methods (FEA) and ship design software.
- Active choice of a fully supervised final year individual and group projects.

5. Relevant QAA Subject Benchmark Group (Engineering)

http://www.qaa.ac.uk/en/Publications/Documents/Subject-benchmark-statement-Engineering-.pdf

This subject benchmark statement defines the academic standard expected of graduates with an engineering degree. The defined learning outcomes are those published by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC): The Accreditation of Higher Education Programmes (2014).

6. Programme Structure

The outline structure of the MCT programme is indicated on the next page within the context of this structure, and CEP, the following important programme features should be noted.

Specific Stage 1 Features

- The Plymouth Plus module (MSCH121PP) brings together students from the different the engineering programmes to apply problem-based learning, with a view to developing a more holistic understanding of their subject and how it sits within a wider context.

- The immersive module (MECH119) provides students with an introduction to the forms and role of engineering drawings and CAD in engineering design.

Specific Stage 2 Features

* The introduction marine technology specific modules (MATS232, MARN219)
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>C/W %</th>
<th>Exam %</th>
<th>Test</th>
<th>Pract %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1EAW</td>
<td>Workshop Skills and Techniques</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH119</td>
<td>Skills for Design and Engineering (Marine)</td>
<td>20</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH117</td>
<td>Engineering Mathematics</td>
<td>20</td>
<td>4</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFMT102</td>
<td>Manufacturing and Materials 1</td>
<td>20</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH116</td>
<td>Engineering Science 1</td>
<td>20</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH121PP</td>
<td>Team Engineering</td>
<td>20</td>
<td>4</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFRG110</td>
<td>Quality and Project Management</td>
<td>20</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPIE115</td>
<td>Stage 1 Mechanical Placement Preparation</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The integrated programme consists of Stage 1 (Level 4) of the standard programme together with ILS1005: Interactive Learning Skills and Communications. Successful completion of both of these components allows students to proceed to Stage 2 (Level 5) of the standard programme.

STAGE 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>C/W %</th>
<th>Exam %</th>
<th>Test</th>
<th>Pract %</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPIE215</td>
<td>Stage 2 Mechanical Placement Preparation</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH257</td>
<td>Computer Aided Mathematics</td>
<td>20</td>
<td>5</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFMT202</td>
<td>Manufacturing and Materials 2</td>
<td>20</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH231</td>
<td>Engineering Design</td>
<td>20</td>
<td>5</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH230</td>
<td>Engineering Science 2</td>
<td>20</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS232</td>
<td>Marine Composites & Vessel Surveying</td>
<td>20</td>
<td>5</td>
<td>75</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARN219</td>
<td>Naval Architecture 1</td>
<td>20</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STAGE 3 Sandwich Placement (optional)

STAGE 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>C/W %</th>
<th>Exam %</th>
<th>Test</th>
<th>Pract %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRDT304</td>
<td>Engineering Project 1</td>
<td>20</td>
<td>6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS349</td>
<td>Composites Design & Manufacture</td>
<td>20</td>
<td>6</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH310</td>
<td>Computer Aided Engineering</td>
<td>20</td>
<td>6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARN339</td>
<td>Marine Engineering</td>
<td>20</td>
<td>6</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARN337</td>
<td>Naval Architecture 2 and CFD</td>
<td>20</td>
<td>6</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRME306</td>
<td>Engineering Project 2</td>
<td>20</td>
<td>6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specific Stage 3 Features
All students are strongly encouraged to do a (non-compulsory) sandwich placement. Most MCT students seek a placement in the marine sector. The Industrial Training Tutor and Placements Office provide specific help in finding this. Opportunities for placement are posted on the Industrial Training Notice Board. Students are expected to produce a CV and letter of application. The considerable benefits of accomplishing a placement are outlined in the Students General Handbook.

- Students who complete a placement of 48 weeks and maintain an approved Industrial Training Log Book may submit to have their degree award endorsed as a 'sandwich' award, in recognition of their industrial experience.

Progression
Progression from Stages 1 & 2 requires a pass in a minimum of 120 credits at each level.

The award of an honours degree requires a minimum of 120 credits at levels 4, 5 & 6 including the engineering project module PRME306 (no compensation). Honours degree classification is based on an average of 10% Stage 1 marks from the best 80 level 4 credits, 30% Stage 2 marks and 60% Stage 3 marks. Students on the MDM program are also made aware that they will only graduate with an accredited qualification if they fulfil the following criteria:

- Achieve a 3rd class qualification or above (honours degree)
- Meet all current accrediting body requirements and regulations.

Mechanical – Marine Advisory Board
The primary role of this Advisory Board is to provide comment and advice on all matters relating to course content and programme development. This process is now well established and has provided very effective guidance, in an industrial context, to both of the school’s BSc programmes. The Board meets twice a year to ensure the industrial relevance of the programmes not only from the point of view of student employability, but also in terms of future accreditation requirements. All members of the Advisory Board have direct experience of our students and/or graduates, either as employers, placement partners or alumni.

The industrial members of the Board undertake, as needed, the following duties:

- Interview final year project students and provide final year project and research project opportunities.
- Deliver lectures to the undergraduate engineering fraternity.
- Advise on new programme initiatives and subject matters.
- Inform academia of changes in industrial practices.
- Provide, where possible, industrial placements and graduate employment opportunities.
- Provide, as required, the necessary support and input into the various accreditation processes.
- Provide comments to the university hierarchy on any policy statements impacting on the engineering courses within the remit of the committee.
Programme Management Team
A guide to “Teaching and Learning Roles and Responsibilities” can be found at https://www1.plymouth.ac.uk/ouruniversity/teachlearn/Handbook/Pages/default.aspx

7. Programme Aims

The School of Marine Science and Engineering shares the values of the University and supports its mission through the provision of a range of courses relevant to the theory and practice of various aspects of engineering and technology. In keeping with this ethos the MCT programme aims defined here have been aligned with the QAA SEEC credit level descriptors, viz. Development of Knowledge and Understanding; Cognitive Intellectual skills; Key transferable skills; Practical skills and Employment related skills. The programme intended learning outcomes have also been developed in accordance with the QAA benchmark statements, the Engineering Council’s UK-SPEC General Learning Outcomes and the Engineering Professor's Conference statement on output standards. Within the MCT programme students are presented with a broad range of learning experiences and challenges to ensure that the marine technology and composites teaching they receive is strongly student-centred, problem-based and relevant to their future careers in the marine or composite materials sector.

The overarching aims of the MCT programme are as follows:

1. To be informative and challenging and to establish a knowledge base suitable for a future career in the marine technology or composite materials sectors.
2. To give students with a variety of entry qualifications an opportunity to realise their potential in their chosen field of study.
3. To enrich the curriculum content and teaching quality through the professional and research expertise of staff and marine based industrial links.
4. To encourage and support students whilst they develop and learn to apply technical and transferable skills that will facilitate life-long learning and continuing professional development.
5. To produce graduates who can make a useful contribution to their professional field or business.

Specifically, the aims of this course are to produce graduates who should be able to:

6. Adopt an integrated approach to design, manufacture, materials and engineering in a marine context.
7. Use modern computer aided engineering tools.
8. Specify processes and techniques used in manufacturing with composite materials.
10. Communicate effectively using written, verbal and graphical techniques.
11. Work effectively in a team.
12. Demonstrate appropriate knowledge of marine engineering and naval architecture.
8. Programme Intended Learning Outcomes

The overall learning outcome of the MCT programme is that its graduates will be able to exercise their engineering, analytical, communication, creative skills and judgement at a level commensurate with that of an Incorporated Engineer usually working in marine technology or a closely related sector. An acceptable threshold level of competence is indicated by the award, with a spectrum of competences reflected in the degree classification of any individual graduate.

The specific content and standards of the degree programme is decided in consultation with appropriate industrial representatives through validation and accreditation procedures. The specific skills, knowledge, abilities and attributes pertinent to this degree programme are designated in the next section where outcomes (marked E) have references to the Engineering Council benchmark statements for Engineering.

8.1. Knowledge and understanding

On successful completion graduates will be able to demonstrate:
1. A good understanding of basic mathematics and physics relevant to marine technology and composites engineering (E).
2. An effective understanding of essential facts, concepts, principles and theories relevant to marine technology and composites engineering (E).
3. A professional and ethical appreciation of the responsibilities required of a practising marine or composites engineer (E).

8.2. Cognitive and intellectual skills

On successful completion graduates will be able to demonstrate:
1. The ability to design an engineering system (in a marine or composite materials context) and its components to meet a need (E).
2. An integrated approach to design, manufacturing, the use of materials and the application of technology (E) in a marine and composites context.
3. A creative approach to the solution of problems and in the formulation and development of appropriate designs in a marine or composite materials context (E).
4. The ability to evaluate marine and composite designs, processes and products and to make improvements (E).
5. The ability to obtain, evaluate and integrate data from a variety of marine technology and composite materials sources (E).
6. A holistic approach to designing marine and composite systems and solving engineering related problems, applying professional judgements to balance risks, costs, benefits, safety, reliability, aesthetics and environmental impact (E).

8.3. Key transferable and employment related skills

On successful completion graduates will be able to demonstrate:
1. The ability to communicate effectively - in writing, verbally and through engineering drawing to a variety of technical and non-technical audiences (E).
2. The ability to apply appropriate mathematical skills - algebra, geometry and suitable computer mediated techniques and analysis to solve engineering related problems (E).
3. The ability to work confidently both within a group and autonomously to plan activities and carry them through to completion (E).
4. The ability to use information and communication technology effectively to manage resources and time in an engineering context.
5. The ability to gather information systematically in order to establish facts and principles which facilitate problem solving (E).
6. Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment (E).
7. A good understanding of the commercial realities which affect engineering and technology.

These important skills are developed through the teaching and learning schemes outlined in the previous sections and are in keeping with QAA and Engineering Council requirements as describe and defined below.

http://www.qaa.ac.uk/AssuringStandardsAndQuality/Pages/employability.aspx
http://www.engc.org.uk/education--skills/accreditation/engineering-accreditation-board
http://www.qaa.ac.uk/Publications/InformationAndGuidance/Pages/Subject-benchmark-statement-Engineering-.asp

8.4. Practical skills
On successful completion graduates will be able to demonstrate:
1. The ability to plan, execute and see through to completion a series of projects, experiments and assignments (E).
2. The safe use laboratory and workshop equipment to generate data (E).
3. The ability to analyse experimental results and determine their strength and validity (E).
4. The ability to communicate effectively using all media to a variety of technical and non-technical audiences (E).
5. The ability to use scientific and technical literature effectively.
7. Effective use of engineering, technical CAE and CAD software (E).
9. Admissions Criteria, including APCL, APEL and DAS arrangements
All applicants must have GCSE (or equivalent) Maths and English at Grade C or above.

<table>
<thead>
<tr>
<th>Entry Requirements for BSc Marine and Composites Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-level/AS-level</td>
</tr>
<tr>
<td>BTEC National Diploma/QCF Extended Diploma</td>
</tr>
<tr>
<td>Access to Higher Education at level 3</td>
</tr>
<tr>
<td>Welsh Baccalaureate</td>
</tr>
<tr>
<td>Scottish Qualifications Authority</td>
</tr>
<tr>
<td>Irish Leaving Certificate</td>
</tr>
<tr>
<td>International Baccalaureate</td>
</tr>
<tr>
<td>Foundation Pathways in Technology</td>
</tr>
<tr>
<td>PUIC Integrated Programme</td>
</tr>
</tbody>
</table>
Partnership Arrangements

PUIC Stage 1 Equivalent Integrated programmes

On successful completion of their Stage 0 programme PUIC students progress to Stage 1 of their designated programme and are taught and assessed by PU staff. Additionally, the students will undertake a module (ILS 1005) of skills and support designed to facilitate their transition to the HE learning culture in the UK.

Progression to Stage 1 Integrated programmes is dependent upon achieving 50% in all modules of the PIUC Stage 0 programme.

Progression to PU Stage 2 is dependent upon successful completion of the PU Stage 1 and at least 60% in ILS 1005 (The PUIC DMD for ILS 1005 is appended).

10. Progression criteria for Final and Intermediate Awards

120 credits from stage 1 required for the award of Certificate of Higher Education (CertHE).

120 credits from stage 1 plus 120 credits from stage 2 required for the award of Diploma of Higher Education (DipHE).

360 credits required for the award of BSc (Hons) in Marine and Composites Technology. The requirement is 120 credits from stage 1, 120 credits from stage 2 and 120 credits from stage 4. The Honours classification is based on the aggregate percentage mark, calculated using a ratio of 3:7 for stages 2 and 4. This means the final aggregate for a three year degree is calculated by applying 0.3 to the level 5 marks (taken in Stage 2) and 0.7 to the level 6 marks (taken in Stage 4).

Students progressing from partner colleges where a progression agreement exists will be advised whether the agreement provides progression to Stage 2 (level 5) or Stage 4 (level 6).

11. Exceptions to Regulations

This exemption for future academic years will be reviewed once the EAB has confirmed.

The current weightings towards final classification are:
Level 5 (Stage 2): 30%
Level 6 (Stage 3): 70%

12. Transitional Arrangements

<table>
<thead>
<tr>
<th>2015/16 Modules</th>
<th>2016/17 Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPIE100</td>
<td>BPIE115</td>
</tr>
<tr>
<td>BPIE200</td>
<td>BPIE215</td>
</tr>
</tbody>
</table>
13. Mapping and Appendices:
13.1. ILO’s against Modules Mapping

<table>
<thead>
<tr>
<th>Intended Programme Learning Outcomes</th>
<th>Programme Aims</th>
<th>Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where outcomes are specific to a programme they are listed under programme title otherwise they are applicable to all programmes.</td>
<td>Aims 1-5 defined in section 7 are common to all programmes and outcomes. Aims relating to a specific programme are identified by a code indicated at the base of this table.</td>
<td>Modules in which Aims and Outcomes are predominantly embodied</td>
</tr>
</tbody>
</table>

A. Knowledge and Understanding

1. Basic Mathematics and Physics that are relevant to technology
 - Aims: 6, 9
 - Modules: MATH117, MAT232, MECH116, MECH230

2. The essential facts, concepts, principles and theories relevant to Mechanical Engineering and to the students’ chosen area of specialisation.
 - Aims: 6, 9
 - Modules: All modules

3. The professional and ethical responsibilities of Engineers
 - Aims: 6, 9
 - Modules: MRFG110, MECH121PP, MECH231, PRDT304

B. Intellectual Abilities

1. Design a system and its components to meet a need
 - Aims: 6, 9
 - Modules: MECH119, MECH121PP, MECH231, MECH310, PRDT304, MARN339, MARN337

2. Adopt an integrated approach to design, manufacturing, materials and technology
 - Aims: 6, 8
 - Modules: MECH121PP, MECH231, PRDT304, MARN337, MATS232

3. Be creative in the solution of problems and in the formulation and development of designs
 - Aims: 9, 12, 8
 - Modules: MECH231, PRDT304, MARN337

4. Evaluate designs, processes and products and make improvements
 - Aims: 9
 - Modules: MECH231, MECH310, PRDT304, MARN339, MARN337
5. Obtain, evaluate and integrate data from a variety of sources
 6, 7
 MECH119
 MECH121PP
 PRDT304
 PRME306

6. Take a holistic approach to designing systems and solving problems, applying professional judgements to balance risks, costs, benefits, safety, reliability, aesthetics and environmental impact
 6, 12
 MECH231
 PRDT304
 MARN339
 MECH310
 MFRG110
 MARN219
 MARN339
 MARN337

C. Practical Skills

1. Plan and execute a series of experiments
 7
 MECH116
 MECH230
 MECH310
 PRME306

2. Use laboratory and workshop equipment to generate data
 7
 MECH116
 MECH230
 MFMT102
 MFMT202

3. Analyse experimental results and determine their strength and validity
 8
 MECH116
 MECH310
 MFMT102
 MFMT202

4. Write technical reports
 10
 MRFG110
 PRDT304
 PRME306
 MATS232
 MECH310

5. Give technical presentations
 9, 11
 MECH121PP
 MECH231
 MATS232
 PRDT304

6. Use scientific and technical literature effectively
 6
 All modules

7. Take notes effectively
 10
 All modules

8. Use technical and CAE software
 7
 MECH119
 MECH231
 MARN219
 MATH257
 MARN337
 MECH208
 MECH310
 PRDT306

D. General Transferable Skills

1. Communicate effectively - in writing, verbally and through drawing
 10
 All modules

2. Apply mathematical skills - algebra,
 12
 All modules
<table>
<thead>
<tr>
<th>geometry and analysis</th>
<th>MECH119</th>
<th>MECH121PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Work as a member of a team</td>
<td>11</td>
<td>MECH231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRDT304</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MARN337</td>
</tr>
<tr>
<td>4. Use information technology</td>
<td>7, 10</td>
<td>All modules</td>
</tr>
<tr>
<td>5. Manage resources and time</td>
<td>11</td>
<td>All modules</td>
</tr>
<tr>
<td>6. Develop student centred learning skills which will facilitate lifelong learning and continuing professional development</td>
<td>10</td>
<td>All modules</td>
</tr>
</tbody>
</table>

13.2. **Assessment against Modules Mapping**
These are fully defined above in sections 8.2 - 8.5 inclusive. All assessments strategies with be fully in line with CEP requirements.

13.3. **Skills against Modules Mapping**
These are fully defined above in sections 8.2 - 8.5 inclusive. All assessments strategies with be fully in line with CEP requirements.

13.4. **Appendices.**
A. MCT program in CEP semester format – see next page.
B. ILS1005 Module Record
Appendix A. MCT program in CEP semester format

<table>
<thead>
<tr>
<th>MCT Stage 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INDUCTION WEEK</td>
<td></td>
</tr>
<tr>
<td>Skills for Design and Engineering (Marine) MECH119</td>
<td></td>
</tr>
<tr>
<td>Manufacturing and Materials 1 MFMT102</td>
<td>Engineering Mathematics MATH117</td>
</tr>
<tr>
<td>ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>Team Engineering (Engineering Design in Action) MECH121PP</td>
<td></td>
</tr>
<tr>
<td>Engineering Science 1 MECH116</td>
<td>Quality and Project Management MFRG110</td>
</tr>
<tr>
<td>ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MCT Stage 2</td>
<td></td>
</tr>
<tr>
<td>INDUCTION WEEK</td>
<td></td>
</tr>
<tr>
<td>Computer Aided Mathematics MATH257</td>
<td>Manufacturing and Materials 2 MFMT202</td>
</tr>
<tr>
<td>ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>Marine Composites and Vessel Surveying MATS232</td>
<td>Engineering Science 2 MECH230</td>
</tr>
<tr>
<td>ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MCT Stage 4</td>
<td></td>
</tr>
<tr>
<td>INDUCTION WEEK</td>
<td></td>
</tr>
<tr>
<td>Composites Design and Manufacture MATS349</td>
<td>Naval Architecture 2 and CFD MARN337</td>
</tr>
<tr>
<td>ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>Marine Engineering MARN339</td>
<td>Engineering Project 1 PRDT304</td>
</tr>
<tr>
<td>ASSESSMENT</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: ILS1005 Module Record

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Interactive Learning Skills and Communication (ILSC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILS1005</td>
<td></td>
</tr>
</tbody>
</table>

This Definitive Module Document (DMD) is designed for all prospective, enrolled students, academic staff and potential employers. It provides a concise summary of the main features of the module and the Specific Learning Outcomes (LOs) that a typical student might reasonably expect to achieve and demonstrate if he/she takes full advantage of the learning opportunities.

Detailed information regarding the content and assessment criteria of this module should be considered alongside the appropriate Programme Specifications (PSs) and Module Guide (see MG ILS1005).

<table>
<thead>
<tr>
<th>Version</th>
<th>Current Version</th>
<th>Prior Version/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.14 October 2014</td>
<td>1.14 September 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.13 October 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.12 July 2012</td>
</tr>
</tbody>
</table>

Module Aims

This module has been designed to be delivered in conjunction with the Integrated FHEQ Level 4 (equivalent) first year degree and associated programmes in order to benchmark and satisfy the transfer criteria with regard to student communication and learning skills competency. This module is part of a wider pedagogic approach taken by NAVITAS UK to ensure the preparedness of its students and graduates with a focus on the relevant transferable and portable skills of effective and professional communication to support further study at a variety of levels, whether it involves higher education or further post-degree vocational programmes and/or professional awards, as well as providing a basis to foster career and life-building skills.

Utilising a number of practical activities to allow candidates to achieve these essential skills, students will be introduced to techniques and...
strategies to manage speech anxiety; enhance grammar and vocabulary; think critically under pressure; research, package and deliver logical and persuasive communication both orally and in a variety of written formats (inclusive of dissertation); summarise; become an effective listener; understand cultural and gender differences; and work effectively in a team.

This module ensures that graduates have attained the prescribed level of inter-disciplinary communication competence described as Level B2 ‘Proficient User’ by the Council of Europe, see Common European Framework of Reference for languages: Learning, teaching assessment 2001, Council of Europe, CUP, Cambridge, p. 24, Table 1. Common Reference Levels: global scale. This module is ACL accredited and benchmarked: ACL is a leading provider of English language provision to students seeking entry to Australian HEIs and a variety of levels. ACL now forms part of Navitas English and carries dual accreditation by the Australian National ELT Accreditation Scheme (NEAS) and the NSW Government’s Vocational Education and Training Accreditation Board (VETAB). Navitas English is also a Registered Training Organisation (RTO) under the Australian Quality Training Framework (AQTF).

Successful completion of this module indicates that students have obtained a good understanding of and ability to apply the requisite knowledge and skills to enable them for successful onward study at undergraduate degree level.

Topics
- Preparation for college and university programmes
- Personal development planning (PDP)
- Presentation skills
- Listening skills
- Skills for self-directed study
- Appropriateness
- Library induction
- Writing at university
- Analysing questions/titles
- Planning written work projects
- Teamwork
- Composition and style
- Summarising techniques
- Revision techniques
- Examination overview and techniques
- Critical analysis and use of evidence

Specific Learning Outcomes

<table>
<thead>
<tr>
<th>A</th>
<th>Knowledge and Understanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon completion of this module students will be able to demonstrate their knowledge and understanding of the following:</td>
<td></td>
</tr>
</tbody>
</table>

1. The structure of the UNIVERSITY degree programmes and classification.
2. UNIVERSITY undergraduate degree scheme structures and awards.
3. UNIVERSITY laboratory, library and e-learning facilities; College resources and personal resources to support study.
4. Time management and its application to notional hours of study and assessment events.
5. Public speaking techniques and managing communication apprehension.
6. Non-verbal communication techniques.
7. Listening skills and knowledge dissemination and retention techniques.
8. The importance of ensuring a clear basic understanding of the history of scholarship with regard to certain subject areas and/or the use of appropriate nomenclature to aid communication.
9. What language styles to employ in a variety of situations to ensure appropriateness and clarity of communication.
10. A comprehensive set of clear writing techniques (plain English, factual and persuasive writing) that can be applied to a variety of written formats.
11. How to create appropriate and effective document layouts.
12. The importance and basic precepts of style when composing written work in a variety of forms.
13. How to embed the concept of continuous improvement and objectivity in relation to an individual’s academic performance.
14. Professional communication and presentation.
15. How to enhance personal creativity and lateral thought processes.
16. Examination techniques and skills.
17. Design and communicate effective messages to a variety of audiences.
18 How to work effectively as a team member.
19 How to work effectively as an individual.
20 How to apply basic research and referencing techniques to formulate reasoned academic opinion in a variety of forms so as to avoid plagiarism and collusion.

B Intellectual / Cognitive Skills

1 Ability to employ appropriate nomenclature and terminologies across subject contexts.
2 Ability to analyse various modes of information when delivered in different formats.
3 Make full use of library and e-learning search (catalogue and bibliographic) resources.
4 Ability to effectively retain and communicate knowledge and understanding of topics covered in the module in a comprehensive manner under timed conditions without recourse to learning aids.

C Practical Skills

1 Develop organisational skills for deadline submission.
2 Proficiently use techniques and technology in the collation, interpretation and presentation of data in oral and written formats.
3 Develop oral presentation skills.
4 Develop written skills for a variety of formats and requirements.

D Transferable Skills

1 Select, read, digest, summarise and synthesise information material in a variety of forms, both qualitative and quantitative (text, numerical data and diagrammatic) and in an appropriate manner to identify and determine key facts/themes, relevancy and assessment of problems and identification and implementation of solutions.
2 Use and clearly communicate discursive, numerical, statistical and diagrammatic ideas, concepts, results and conclusions using appropriate technical and non-technical language and language style, structure and form.
3 Apply basic research and referencing techniques to all aspects of study, information collation, information presentation and formulation of academic opinion.
4 Embedding the importance of self-study and reliance. This involves cultivating and developing a responsibility within each student to take cognizance for their own learning, initiative, effective time-management and self-discipline within the academic and professional environments.

Generic Learning Outcomes

Key skills demonstrated:

- Personal organisation and time-management skills to achieve research goals and maintain solid performance levels;
- Meet converging assessment deadlines – based on punctuality and organisation with reference to class, group and individual sessions within a dynamic and flexible learning environment with variable contact hours and forms of delivery.
- Understanding of the importance of attaining in-depth knowledge of terminology as used in a given topic area, as a basis to further study;
- Communicate clearly using appropriate nomenclature to enhance meaning in all oral and written assessments with no recourse to collusion or plagiarism.
- Understanding, knowledge and application of appropriate and effective methods of communication to meet formal assessment measures;
- Present clearly, coherently and logically in a variety of oral and written formats using a variety of appropriate qualitative and quantitative tools and evidence bases.
- Understanding and knowledge as to the development of the industry and/or scholarship in relation to a given topic under study;
- Demonstrate an understanding of the current themes of a given topic, the academic and practical foundation on which they are based – demonstrated by a lack of plagiarism and need for collusion in both individual and group work.
- Understanding of the rules applying to plagiarism and collusion;
- Collate, summarise, reason and argue effectively on a given topic without reference to another’s work or ideas/concepts.
- Ability to work as an individual, in a small team and in a larger group to effect data collation, discussion and presentation of evidence;
- Meet and succeed in each of the varied assessments presented.

Assessment Type	Duration	Method	Topic	Schedule	Weighting
Assessment E	10 weeks	efficacy of individual PDP	Attendance and participation in PDP	NA	10%
Assessment A	Nine (9) weeks	research project (1,500 – 2000 words)	Computing/engineering /biological or biomedical/environmen t studies	Set session 2.2 Submission session 11.1	30%
Assessment B	1 session (1 hour)	Listening assessment	Listen to a lecture (computing/engineering /biological or	Session 10.2	10%
Assessment C	Individual presentation	1 session	Presentation	Project presentation and defence	Session 11.2
Assessment D	Final Examination	Two (2) hour (closed-book) examination	Examination	Final summative examination covering academic reading and writing skills; history of scholarship and academic debate and critical analysis	Week 13

Total Weighting 100%

<table>
<thead>
<tr>
<th>Standard Progression Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the purposes of PUIC this module carries a standard minimum progression requirement: [grade C* / pass mark 65%]. For Plymouth University this is a Pass/Fail zero credited module that the student must pass to progress into University Stage 2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Classification</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>High Distinction</td>
<td>80% – 100%</td>
</tr>
<tr>
<td>B*</td>
<td>Distinction</td>
<td>70% – 79%</td>
</tr>
<tr>
<td>C*</td>
<td>Pass</td>
<td>65% - 69%</td>
</tr>
<tr>
<td>F</td>
<td>Fail</td>
<td>Less than 65%</td>
</tr>
</tbody>
</table>

Bibliographic Resources

Essential Reading

Module Guide – see MG ILS1005

Recommended Reading

Further Sources

Journals (general reading)

Asian Journal of Communication

Communication Education

Journal of Communication

Relevant computing/engineering/biological or biomedical/environment journals – supplied as focus by Instructor

List