USING MACHINE LEARNING TO DERIVE SPATIAL WAVE DATA: A CASE STUDY FOR A MARINE ENERGY SITE

Jiaxin Chen, Ian G. Ashton, Ajit C. Pillai, Lars Johanning College of Engineering, Mathematics and Physical Sciences, University of Exeter

Objective: Develop machine learning models to act as surrogates that learn the nonlinear mapping from input point wave data to spatially distributed wave data

Surrogate Model Verification (@ Wave Hub)

Available Buoy Observation							
uoy #	Name	Lon (°W)	Lat (°N)	Depth (m)	Nearest SWAN grid point		Distance to nearest
					Lon (°W)	Lat (°N)	SWAN grid point (km)
uoy 1	Penzance	5.503	50.114	8.84	5.505	50.115	0.2835
uoy 2	Looe Bay	4.411	50.339	10.32	4.409	50.340	0.3133
uoy 3	Perranporth	5.175	50.354	19.97	5.176	50.358	0.5330
uoy 4	Wave Hub	5.614	50.347	35.85	5.615	50.349	0.2334

* Buoy1~3 observations as Surrogate model input, result interpolated to Buoy 4 location for Surrogate output verification.

B

B

В

Conclusion and Discussion

- Surrogate model proposed using the Random Forest algorithm can provide an efficient and reasonable way to replicate numerical results (with less than 20 minutes to train 21 years data).
- Initial results suggest **better results** than the corresponding SWAN model (at a Marine Energy Site location).
- The model will have **potential** applications in **real-time** wave monitoring, **forecasting** for marine renewable energy sites and supporting vessel navigation.
- However, this system **relies on an accurate** spatial description of the wave conditions that does not and cannot replace the **physical modelling** itself.

Buoy observations are available at Channel Coastal Observatory: <u>https://www.channelcoast.org</u>

For further information, please contact Jiaxin Chen (jc1083@exeter.ac.uk).