Dr Konstantinos Georgoulas
Profiles

Dr Konstantinos Georgoulas

Research Assistant / Associate Research Fellow in Mechanical Engineering

School of Engineering, Computing and Mathematics (Faculty of Science and Engineering)

Biography

Biography

Research Associate in Mechanical Engineering with research interest in thermo-fluids, numerical modelling (mainly computational fluid dynamics) and marine biology. Currently working as part of the EUROSWAC project.

Qualifications

Ph.D. in Mechanical Engineering and Marine Biology, University of Edinburgh (2017-2021)

MEng in Mechanical Engineering, Heriot-Watt University (2012-2017)

Teaching

Teaching

Teaching interests

Fluid Mechanics

Thermodynamics

Computational Fluid Dynamics

Engineering Design

Research

Research

Research interests

I am currently working as part of the EuroSwac project, developing a Computational Fluid Dynamics model to evaluate the environmental impact of a Sea-Water Air-Conditioning (SWAC) system. My research interests focus on using mesh-less (Smoothed Particle Hydrodynamics) and mesh-based (Finite Volume) methods to develop numerical models.

Ph.D. Research

My Ph.D. was focused around developing a numerical model to evaluate how cold-water corals engineer their habitat according to the Goldilocks Principle. These corals live in the deep-sea and their main source of food is by capturing prey (like zooplankton). If the velocity of the incoming current is too low, prey can easily evade capture; if it is too high, then the tentacles of the corals can be pushed aside by the current. It has been shown experimentally that there is a velocity range (the Goldilocks Zone) where prey capturing is optimal and this was used as the main hypothesis in my models. I've shown how these corals modify their environment and the importance of storing enough energy during periods of optimal flow in order to survive when the conditions are not ideal. I've also investigated how ocean acidification can affect cold-water coral reefs and how we could intervene to alleviate habitat losses with using artificial structures as potential restoration practices. The Smoothed Particle Hydrodynamics (SPH) method was used in my models. I developed my own SPH solver and parallelized it with OpenMP to allow for high-resolution and three-dimensional simulations.

Publications

Publications

Key publications

Key publications are highlighted

Journals
Articles
Georgoulas K, Hennige S & Lee YC (2023) 'Smoothed particle hydrodynamics for modelling cold-water coral habitats in changing oceans' Journal of Sea Research , DOI Open access
Hennige SJ, Larsson AI, Orejas C, Gori A, De Clippele LH, Lee YC, Jimeno G, Georgoulas K, Kamenos NA & Roberts JM (2021) 'Using the Goldilocks Principle to model coral ecosystem engineering' Proceedings of the Royal Society B: Biological Sciences 288, (1956) 20211260-20211260 , DOI Open access
Kazanidis G, Vad J, Henry L-A, Neat F, Berx B, Georgoulas K & Roberts JM (2019) 'Distribution of Deep-Sea Sponge Aggregations in an Area of Multisectoral Activities and Changing Oceanic Conditions' Frontiers in Marine Science 6, , DOI